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Abstract

Purpose – The present paper addresses the computer modelling of pipe formation in metal castings.

Design/methodology/approach – As a preliminary, a brief review of the current state-of-the-art in
pipe shrinkage computation is presented. Then, in first part, the constitutive equations that have to be
considered in thermomechanical computations are presented, followed by the main lines of the
mechanical finite element resolution. A detailed presentation of an original arbitrary
Lagrangian-Eulerian (ALE) formulation is given, explaining the connection between the Lagrangian
and the quasi Eulerian zones, and the treatment of free surfaces.

Findings – Whereas most existing methods are based on thermal considerations only, it is
demonstrated in the current paper that this typical evolution of the free surface, originated by
shrinkage at solidification front and compensating feeding liquid flow, can be effectively approached
by a thermomechanical finite element analysis.

Research limitations/implications – Future work should deal with the following points:
identification of thermo-physical and rheological data, automatic and adaptive mesh refinement,
calculation of the coupled deformation of mold components, development of a two-phase solid/liquid
formulation.

Practical implications – An example of industrial application is given. The proposed method has
been implemented in the commercial software THERCASTw dedicated to casting simulation.

Originality/value – The proposed numerical methods provide a comprehensive approach, capable
of modelling concurrently all the main phenomena participating in pipe formation.
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1. Introduction
The complexity of phenomena encountered in casting processes makes numerical
modelling a very useful tool to predict the final state of cast products and optimize the
process. Numerical developments have long been focused on thermal and
microstructural aspects, which are of primary importance in casting analysis.
However, during the last 10 years, there has been a growing interest in the modelling of
the mechanical aspects of solidification processes (Cross and Campbell, 1995; Thomas
and Beckermann, 1998). The objectives are then to evaluate thermal stresses and
strains during solidification, in order to examine how the latter can significantly affect
heat exchanges at interfaces, provide key elements for crack prediction and evaluate
the residual stresses and deformations of cast products.

In the present paper, we will focus on the formation of the pipe defect, or open
shrinkage, which occurs in the risers attached to cast parts or ingots. This defect
results from the contraction of the alloy during solidification. The loss of volume,
which is localized at the solidification front, is compensated by a fluid flow coming
from the risers, through the liquid and mushy zones. This generates in turn a change in
the metal level in the risers. This level decrease, associated with the progress of the
solidification, generates the collapse of the metal free surface, creating the so-called
pipe defect. The prediction of this defect is of major importance especially in the case of
heavy ingots or large parts cast in small series. For such parts, the risers represent an
important fraction of the total amount of liquid metal and the reduction of their size can
lead to considerable savings.

The prediction of this defect has long been tackled using the Niyama criterion
(Niyama et al., 1982), although this indicator had been developed essentially to predict
internal microporosities, on the basis of thermal variables, namely the cooling rate and
the temperature gradient. This approach is still in use in a lot of simulation packages.

An alternative approach has been proposed by Roch et al. (1991) in a paper
dedicated to the two-dimensional analysis of heat transfer and fluid flow in
the solidification of heavy steel ingots. The authors simply remark that knowing the
amount of solid that is formed at each time step, it is easy to deduce the free volume to
be compensated by the feeding flow. Thus, this incremental free volume is used to
deduce the decrease of the liquid metal surface. To take into account the incremental
solidification that occurs in the riser, the intercept of the new metal level with the
solidus isotherm is calculated: the free volume is delimited by the previous level, the
new level, and the solidus isotherm. Hence, the pipe formation analysis is not directly
incorporated in the governing equations for fluid flow, but rather it is implemented
after the completion of each time step. In other words, the feeding is considered as
perfect in this case: the entire shrinkage volume is assigned to the pipe formation and
the liquid feeding cannot be interrupted by an excessive pressure drop arising from a
too low permeability of the mushy zone. An additional drawback of this method
appears when considering the possible presence of several risers. How to assign the
global incremental free volume to the different risers? This would need specific
additional rules to be calculated, possibly coming from the classical dimensioning of
risers.

Another approach has been initiated by Barkhudarov and co-workers
(Barkhudarov et al., 1993). Like Roch et al., they perform a two-dimensional coupled
resolution of heat transfer and fluid flow in the solidifying part. Then, adding a volume
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sink term in the fluid flow equation, representing the local rate of volumetric shrinkage,
and using the VOF (volume of fluid) algorithm for free surface tracking, predictions of
free surface evolution and pipe formation can be obtained. However, the equations
governing the flow in the mushy zone are expressed in a rough way, and the approach
is affected by the usual numerical diffusion of such front tracking algorithms. This
idea has been taken up by Naterer (1997) and Ehlen et al. (2000) including this time
Darcy terms to model the liquid flow in the mushy zone. Naterer also proposed a
specific treatment of the updating of surface nodes to model the free surface evolution.
A remark that can be done regarding all the previous analyses is that some additional
contributions to volume changes are not considered: first, the thermal contraction of
the metal in both liquid and solid state, all along its cooling down, and second, the
possible opening of air gaps between the part and mold.

In the present paper, we would like to show that the finite element arbitrary
Lagrangian-Eulerian (ALE) approach can offer a unified framework in order to take
into account the major contributions to pipe formation. As a matter of fact, the
Lagrangian character permits a precise description of the evolution of the boundary of
the computational domain. This is essential to treat air gap opening for instance. At the
same time, a quasi Eulerian formulation allows the computation of thermal convection
in liquid pools and the feeding flow originated by solidification shrinkage. Finally, we
will show that regarding the free surface evolution – and consequently, the prediction
of pipe formation – the ALE formulation can provide an efficient solution.

The present work is a contribution to the development of the THERCASTw

software at Cemef laboratory and Transvalor. This finite element code has been first
developed as a three-dimensional thermomechanical solver for solidification problems
(Bellet et al., 1996), using hexahedral elements. Then tetrahedral linear finite elements
have been implemented, using a mixed velocity-pressure formulation, as well as
automatic meshing and remeshing capacities (Ménaı̈ and Bellet, 1995). More recently, a
clear distinction between solid-like and liquid-like constitutive equations for the
solidifying alloys has been shown mandatory to treat in a simultaneous manner the
deformation of the solidified regions of a casting and the liquid flow due to thermal
convection. This has given rise to first implementation of the ALE formulation
( Jaouen, 1998; Bellet and Jaouen, 1999) in the context of a multidomain analysis,
including mold deformation ( Jaouen, 1998).

In the present paper, we will address the numerical issues that are directly
connected to the pipe formation prediction. Hence, we invite the interested reader to
consult the references quoted in the previous paragraph to get more information about
the heat transfer resolution or the basics of the mechanical formulation as well as the
thermomechanical coupling. In Section 2, we will present the two types of constitutive
equations (liquid-like and solid-like) that are used simultaneously in the mechanical
resolution. In Section 3, the finite element discretization of the mechanical equations
will be described. Section 4 will be devoted to the presentation of the ALE formulation;
and Section 5 will present an application to an industrial casting with comparison to
the experimental measurements of the shape of the pipe defect.

2. Constitutive equations for metallic alloys in solidification conditions
The earlier works dealing with the modelling of thermomechanical phenomena in
casting processes (stress-strain computations) generally have been based on
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elastic-viscoplastic constitutive equations for the material behaviour (Weiner and
Boley, 1963; Smelser and Richmond, 1988; Fjaer and Mo, 1990; Wiese and Dantzig,
1990; Inoue and Ju, 1992; Moitra et al., 1992; Celentano et al., 1993; Zhang et al., 1994;
Ménaı̈ and Bellet, 1995; Bellet et al., 1996). The material parameters are then
temperature dependant in order to model the evolution of the material behaviour over a
very large temperature interval, including the liquid-solid phase change. However, it
has become clear that such a formulation fails to predict accurately those phenomena
( Jaouen, 1998). For instance, several drawbacks of this approach can be mentioned.

First, the change of specific volume associated with the liquid-solid phase change
cannot be modelled adequately using a single elastic-viscoplastic constitutive equation
because it causes artificial elastic stresses. A direct consequence is the poor quality of
the prediction of the amount of volumetric shrinkage.

Second, regarding the modelling of the liquid phase, this approach is unable to
provide a simple and acceptable representation of liquid or mushy states. The use of
such a single model supposes the fluid to be at rest. This excludes the modelling of
fluid motion associated with thermal or solutal convection, and so the relevant
computation of the distribution of temperature and alloying elements in the liquid pool.

To overcome those difficulties, it is suggested here to make a clear distinction
between the constitutive equations used for the liquid or mushy state, and for the solid
state of the alloys. In the model proposed here, the liquid or mushy state is modelled
using a pure thermo-viscoplastic law, without any elastic contribution. Depending on
the temperature (or the solid fraction), the model is either purely Newtonian (pure
liquid state) or non-linear viscoplastic (mushy state). Below a critical temperature
TC (for instance, the “coherency” temperature or the solidus temperature), the alloy
behaviour is modelled by a thermo-elastic-viscoplastic constitutive law, which is more
representative of solid-like behaviour. We first present the two kind of models in the
next two paragraphs. In Section 3, it will be shown how those two models can be used
simultaneously in a single finite element resolution.

2.1 Liquid-like constitutive equations
A pure thermo-viscoplastic model is used. In this case, the compressibility is only due
to the thermal contribution (no elasticity). The equations of the constitutive model can
be written as follows:

_1 ¼ _1vp þ _1 th ð1Þ

_1vp ¼
1

2K

ffiffiffi
3

p
_1eq

� �12m

s ð2Þ

_1 th ¼ a _T þ
1

3
_gsD1

tr

� �
I ð3Þ

in which the strain rate tensor _1 is split into viscoplastic, and thermal part (equation
(1)). The latter includes thermal expansion and shrinkage due to the liquid-solid phase
change (equation (3)), _T being the temperature rate, a the thermal linear expansion
coefficient, _gs the rate of the volumic solid fraction, D1tr the relative volume change due
to the total liquid-solid transition and I the identity tensor. Equation (2) is the
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classical constitutive equation of a generalized non Newtonian fluid. It relates the
viscoplastic strain rate to the stress deviator s, which is in turn defined by:

s ¼ sþ pI ; p ¼ 2
1

3
trs ð4Þ

in which s is the Cauchy stress tensor and p the associated hydrostatic pressure. In
relation (2) K is the so-called consistency of the material and m is the strain-rate
sensitivity coefficient, while _1eq is the von Mises equivalent strain-rate, defined by:

_1eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
_1vp
ij
_1vp
ij

r
ð5Þ

The limit case of the Newtonian behaviour (liquid state) is obtained for m ¼ 1: In this
case, K is simply the dynamic viscosity of the liquid.

2.2 Solid-like constitutive equations
A thermo-elastic-viscoplastic model is used to represent the solidifying material
behaviour. It is described by the following equations:

_1 ¼ _1 el þ _1vp þ _1 th ð6Þ

_1 el ¼ ðD elÞ21 _s ¼
1 þ n

E
_s2

n

E
trð _sÞI ð7Þ

_1vp ¼
›Q

›s
¼

ffiffiffi
3

p

2seq

seq 2 s00 2 H1n
eq

K
ffiffiffi
3

p

� �1=m

s ð8Þ

_1 th ¼ a _T þ
1

3
_gsD1

tr

� �
I ð9Þ

The strain rate tensor _1 is split in an elastic, a viscoplastic, and a thermal part
(equation (6)). As in the fluid-like model, the latter includes thermal expansion and
shrinkage due to the liquid-solid phase change (relation (9) or (3)). Equation (7) yields
the hypoelastic Hooke’s law, where E is the Young’s modulus, n the Poisson’s
coefficient, D el the elasticity tensor and _s a time derivative of the stress tensor.
Equation (8) gives the relation between the viscoplastic strain rate and the stress
deviator s, in which seq is the von Mises equivalent stress defined by:

seq ¼

ffiffiffiffiffiffiffiffiffiffiffi
3

2
sijsij

r
ð10Þ

In equation (8) s0 ¼ s00 þ H1n
eq denotes the static yield stress below which no

viscoplastic deformation occurs ( the expression between brackets is reduced to zero
when negative).

In THERCASTw software, all material parameters of constitutive equations can be
defined point-wise as a function of temperature.
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2.2.1 Constitutive equations: discussion. The critical temperature, TC, separating the
two constitutive models can be chosen arbitrarily. If we refer to previous works
dedicated to the rheological characterization of metallic slurries (Vicente-Hernandez,
1994; Decultieux et al., 1997) it seems that the limit temperature could be taken equal to
the “coherency” temperature, which is defined as the temperature below which the
semi-solid medium can support stresses, due to the setting up of a continuous solid
skeleton. In this case, the transition temperature between the two types of constitutive
models is located within the solidification interval. This means that elastic effects
begin to be noticeable in the mushy state, at high solid fraction (typically gs . 0:75).

An alternative could be to take a transition temperature TC lower than the
coherency temperature, possibly lower than or equal to the solidus (or eutectic)
temperature. If lower, this means that the elastic effects are considered negligible at
high temperature in solid state. This is a frequent approximation in hot metal forming
analysis.

It can be concluded from those considerations that there is still a great need for
experimental rheological work. However, in the authors’opinion, it is really necessary
to separate clearly liquid-like and solid-like models in thermomechanical numerical
simulations.

It is also worth noting that in the present approach the mushy zone is considered as
a single-phase continuous medium. In other words, we do not distinguish the velocity
of the liquid phase from the velocity of the solid phase. In the context of stress-strain
prediction, this approximation seems admissible since the mushy zone probably does
not play a prominent role in stress-strain development. But this is clearly a
simplification for fluid feeding. Actually the present extension of this approach to the
prediction of pipe formation relies on the same physical assumption as used by Roch
et al. (1991) for instance: the feeding is considered as perfect, the segregation between
the liquid flow and solid deformation in the mushy zone is not considered. We will see
that this remark does not remove anything with the merits of the present ALE
formulation. However, in the near future, the implementation of Darcy terms in the
momentum equation could be a significant improvement. Finally, to finish with this
discussion about constitutive equations, notice that a correct description of the
mechanics of the mushy zone would require a real two-phase approach, such as the one
suggested in Nguyen et al. (1994) for instance, which consists of the coupling between
the deformation of a compressible viscoplastic solid skeleton and the liquid flow
obeying the Darcy law. As far as we know, such a comprehensive approach yet has not
been applied in the non-isothermal context of solidification.

3. Mechanical equilibrium equations
At any time, in any domain (the solidifying part or the mold components) the
mechanical equilibrium is governed by the momentum equation:

7 ·sþ rg 2 rg ¼ 7·s 2 7p þ rg 2 rg ¼ 0 ð11Þ

where g denotes the gravity vector and g the acceleration vector. Gravity and inertia
can be neglected in the mold components. The acceleration is in fact noticeable only in
the liquid pools, when they are affected by fluid convection.
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3.1 Mechanical boundary conditions
The part boundary ›V1 can be divided into two main regions (the presentation is given
here assuming a rigid mold). For the extension of contact boundary conditions to the
interaction with deformable mold components, ( Jaouen, 1998)):

(1) ›V1/mold consists of the boundary regions ›V1/j of the part facing the mold
components (domains Vj, j $ 2). The unilateral contact condition is applied to
these surfaces:

sn ·n # 0

d $ 0

ðsn ·nÞd ¼ 0

8>><
>>: ð12Þ

where d is the local interface gap width (positive when air gap exists effectively)
and n is the local outward unit normal to the part. The fulfilment of equation
(12) is obtained by means of a penalty condition, which consists in applying a
normal stress vector proportional to the normal velocity difference via a penalty
constant xp (the brackets in the following expression denote the positive part):

T ¼ sn ¼ 2xpkðv 2 vmoldÞ ·nln ð13Þ

The possible tangential friction effects between the part and mold are
considered by a Coulomb friction model. In this case, the previous stress vector
has a tangential component, Tt , given by:

T t ¼ 2mfjsnj
1

kv 2 vmoldk
ðv 2 vmoldÞ ð14Þ

where sn is the normal stress or contact pressure, and mf the friction coefficient.

(2) ›V1/press consists of the regions of ›V1 not facing the mold, i.e. where an
external fluid pressure Pext(t) is prescribed. This pressure can be either the
atmospheric pressure, on so-called free surfaces, or a prescribed pressure due to
the process itself. Consequently, locally, the external stress vector reduces to an
applied normal stress vector on ›V1/press:

T ¼ sn ¼ 2PextðtÞn ð15Þ

3.2 Weak form of mechanical equations
The primitive variables are velocity and pressure. The problem to be solved is then
composed of two equations. The first one is the weak form of the momentum equation,
also known as the principle of virtual power. Since p is kept as a primitive variable,
only the deviatoric part of constitutive equations is accounted for and has to be solved
locally in order to determine the deviatoric stress tensor s. Therefore, the second
equation consists of a weak form of the volumetric part of the constitutive equations.
It expresses the incompressibility of the plastic deformation and will govern the
pressure evolution. This leads to:
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;v*

Z
V

s : _1* dV 2

Z
V

p7 ·v* dV 2

Z
›V

T ·v* dS2

Z
V

rg ·v* dV þ

Z
V

rg ·v* dV ¼ 0

;p*

Z
V

p*tr _1vp dV ¼ 0

8>>><
>>>:

ð16Þ

The pressure variable appears as a Lagrange multiplier of the plastic incompressibility
constraint. The form of the term integrated in the second equation will change
according to the local state of the alloy (i.e. according to the local temperature). In case
of a solid-like constitutive equation (elastic-viscoplastic behaviour), it will be:

tr _1vp ¼ tr _12 tr _1 el 2 tr _1 th ¼ 7 · v þ
3ð1 2 2vÞ

E
_p 2 3a _T 2 _gsD1

tr ð17Þ

whereas in case of a liquid-like constitutive equation (pure viscoplastic behaviour), the
elastic contribution vanishes, yielding:

tr _1vp ¼ tr _12 tr _1 th ¼ 7 · v 2 3a _T 2 _gsD1
tr ð18Þ

Accordingly, the stress deviator s in equation (16) will result either from an
elastic-viscoplastic constitutive equation or from a viscoplastic or Newtonian law.

3.3 Time discretization
Given the configuration occupied by the cast part at time t, the equations to be solved
for (v, p)t, velocity and pressure field at time t, can be expressed in the following way
(for the sake of clarity, we take the case of a thermo-elastic-viscoplastic behaviour in
the second equation).

;v*

Z
Vt
sðv tÞ : _1* dV 2

Z
Vt

p t7 ·v* dV 2

Z
›Vt

T t ·v* dS2

Z
Vt
rg ·v* dV

þ

Z
Vt
r
v t 2v t2Dt

Dt
·v* dV ¼ 0

;p*

Z
Vt

p* 7 ·v t þ
3ð122vÞ

E

pt 2pt2Dt

Dt
23a _Tþ _gsD1

tr

� �
dV ¼ 0

8>>>>>>>>><
>>>>>>>>>:

ð19Þ

In the above equation, _T and _gs are provided by the thermal resolution. The time
derivatives of pressure and velocity are approached by implicit Euler backward finite
difference schemes:

_pt ¼
1

Dt
ðpt 2pt2DtÞ g t ¼

1

Dt
ðv t 2v t2DtÞ ð20Þ

After resolution, the configuration updating is defined by:

x tþDt ¼x t þDtv t þ
Dt 2

2
g t ð21Þ

In the context of solidification, the material velocities and their time derivative remain
rather low. Therefore, the second-order acceleration terms may be neglected.
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3.4 Finite element discretization and resolution
The finite element mesh is composed of linear tetrahedra. The P1 þ =P1 element is
used (Arnold et al., 1984; Fortin and Fortin, 1985). The velocity field is linear
continuous, including additional degrees of freedom at the centre of the element
(bubble formulation), and the pressure field is linear continuous (Figure 1). Inside each
finite element the discretized velocity and pressure field are expressed as:

vh ¼ vL
h þ bh ¼

X4

n¼1

NnV
n þ N ðbÞB ph ¼

X4

n¼1

NnP n ð22Þ

The value of the “bubble” interpolation function N (b) is 1 at the tetrahedron centre and
0 at its boundary. It is defined separately on each of the four sub-tetrahedra, so that the
velocity field is linear on each sub-tetrahedron. The central additional velocity degrees
of freedom, B, permit a better control of the incompressibility constraint. This so-called
“mini-element” satisfies the Brezzi-Babuska condition. Since any virtual velocity field
vh can be decomposed by equation (22), the equilibrium equation is projected onto
the v L – or P1 – space and onto the b – or “bubble” – space. Without entering into
mathematical details ( Jaouen, 1998; Bellet and Jaouen, 1999), such a formulation leads
to the elimination of the bubble degrees of freedom (which belong to a unique
tetrahedral element) during the finite element assembly process. This leads to the
resolution of the following non-linear equation:

RðV ;P Þ ¼ 0 ð23Þ

the unknowns of which are the vector V of nodal velocities, and the vector P of nodal
pressures. This set of equations is solved by a Newton-Raphson method. At each
Newton-Raphson iteration, the resolution of the set of linearized equations for (V, P ) is
performed by an iterative solver with block diagonal preconditioning.

Figure 1.
P1 þ /P1 element
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3.5 Simultaneous treatment of solid and liquid regions
Such a mini-element formulation provides a perfect compatibility between the
treatment of an elastic-viscoplastic medium and a pure viscoplastic or Newtonian
medium. Therefore, it allows to treat simultaneously the solidified zones and the liquid
or mushy pools of a casting. The unified form of the mechanical equations can be
written in the following way:

;v*

Z
V

s evp

s vp

(
: _1*dV2

Z
V

p7·v*dV2

Z
›V

T ·v*dS2

Z
V

rg ·v*dVþ

Z
V

rg·v*dV ¼0

;p*

Z
V

p* 7·vþ
3_pð122vÞ=E

0

(
23a _T2 _gsD1

tr

 !
dV ¼0

8>>>>>><
>>>>>>:

ð24Þ

The braces in both equations allow the distinction between the two constitutive
models. This choice is done when assembling each finite element, depending on the
temperature at centre. If the temperature exceeds the critical temperature TC, then the
whole element is considered viscoplastic (lower line in braces), otherwise it is
elastic-viscoplastic (upper line in braces).

4. ALE formulation in the context of solidification
During the cooling down of a cast part, the liquid pools can be affected by convection
caused by the gradients of the specific mass. Convection can be initiated at high
Rayleigh numbers, i.e. when the cast parts are large enough. The specific mass
gradients can be caused by gradients of temperature and alloy elements concentration.
However, only the thermal convection is considered in the present work.

When considering a constant specific mass r in equation (24), this phenomenon is
neglected and liquid pools remain more or less static in the computation. This
approximation is acceptable in the case of small parts or for larger ones when liquid
convection is neglected in the first approach (the temperature homogenization
associated with liquid convection is not captured by the simulation). In this case, the
fluid motion is originated by the alloy volumetric contraction during phase change and
cooling.

When the local value r(T ) is used in equation (24), thermal convection is accounted
for. In this case, and provided that the Rayleigh number be high enough, the velocity in
the liquid regions are significantly higher than in the solid regions.

In both cases, and especially in the second one, the fluid motion cannot be handled
with a classical updated Lagrangian scheme, since it would lead to mesh degeneracy in
the liquid pools. At the same time, a purely Eulerian scheme is not satisfying, since it
cannot provide enough precision for the evolution of the free surfaces of the mesh: the
location of the physical boundary of the part by a front tracking algorithm is irrelevant
when dealing with air gap opening for instance. Therefore, a specific ALE scheme has
been developed and is presented hereunder.

The basic principle of the ALE method is to separate clearly the mesh velocity field
vmsh from the material velocity field vmat (previously denoted v and coming from the
resolution of (equation (23))). Hence the ALE method is between the Lagrangian
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method ðvmsh ¼ vmatÞ and the Eulerian one ðvmsh ¼ 0Þ: There are two main problems
to be solved: the computation of the mesh velocity field and the consideration of the
velocity difference vmat 2 vmsh in the energy and momentum equations (Chenot and
Bellet, 1995).

4.1 Computation of mesh velocity
The computation of vmsh consists in regularizing the position of nodes to minimize the
deformation of the elements of the mesh. Knowing the time step Dt, the mesh velocity is
defined by the relation

x tþDt ¼ x t þ Dtvmsh ð25Þ

in which x tþDt are the new locations of nodes. These new positions are determined by
an iterative procedure which aims at positioning each node at the center of gravity of
the set of its neighbours. This is done under the constraint of conservation of material
flux through the domain surface:

vmsh ·n ¼ vmat ·n ð26Þ

where n is the outward unit normal. This constraint is enforced by a local penalty
technique. In order to ensure that equation (26) correctly expresses material flux
conservation, we use in this relation the so-called consistent normal vectors defined at
surface nodes. Those vectors are such that any tangential nodal velocity (i.e. a velocity
which is orthogonal to the consistent normal vector) provides a null contribution to the
flux through the discretized surface. As demonstrated in Bellet (2001), in the case of
linear elements, the consistent normal vector at each surface node m is defined by the
average of the normals of the surrounding facets weighted by their surface:

nm ¼
1

f[tðmÞ

P
S fn f

�����
����� f[tðmÞ

X
S fn f ð27Þ

where t (m) denotes the set of triangular facets f the surface node m belongs to, S f

being the area of each facet.
In three dimensions, the difficulty of the procedure lies essentially in the treatment

of nodes which are in the vicinity of sharp edges and corners of molds and/or which
belong to symmetry planes. In this case, the local penalty method can be applied to
enforce (equation (26)) for several normal vectors.

4.2 Treatment of advection terms
Knowing the mesh velocity, it is now necessary to proceed to the updating of nodal
fields, for instance, the temperature T. This is done by writing for each node:

T tþDt ¼ T t þ
dgT

dt
Dt ð28Þ

where the time derivative of T with respect to the grid can be expressed as follows:

HFF
15,2

130



dgT

dt
¼

dT

dt
2 ðvmat 2 vmshÞ ·7T ð29Þ

Once the heat transfer problem has been solved on the time increment, the total
(material) time derivative of the temperature is known at each node. After computation
of vmat and vmsh, the updating of the temperature field can be obtained by writing
equations (28) and (29) at each node and only requires the nodal temperature gradient.
Using an upwind technique, this nodal gradient is computed in the upstream element,
according to the advection velocity vmat 2 vmsh (Figure 2).

In order to express the acceleration terms in the momentum equation, a transport of
the material velocity field is necessary. In equation (19), the velocity v t2Dt is the
material velocity of the particle at the previous time level vt2Dt

mat : Hence, after
configuration updating, this requires a pure transport of the velocity field. This is
achieved by a similar scheme as equations (28) and (29), but in which the material
derivative is taken equal to zero:

vt
matðx

tþDtÞ ¼ vt
matðx

tÞ2 7vt
matðx

tÞ
	 


vt
matðx

tÞ2 vmsh

� �
Dt ð30Þ

Referring to Figure 2, it can be seen that equation (30) is nothing but a first-order
spatial development of the material velocity field in the upstream element associated
with the nodal position x t.

4.3 Lagrangian and Eulerian-Lagrangian zones
Regarding the global treatment of a casting, the idea consists in defining the solidified
regions as Lagrangian (convected mesh) and the liquid or mushy ones as

Figure 2.
ALE formulation:
schematic in two

dimensions
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Eulerian-Lagrangian (regularized mesh under the constraint (equation (26))).
Therefore, each node is affected to one of the two classes, according to the following
rule, as shown in Figure 3.

(1) Each node belonging at least to one solid-like element (i.e. a tetrahedron whose
constitutive equation has been chosen elastic-viscoplastic, see Section 2) is
treated as Lagrangian (mesh velocity equals material velocity).

(2) All other nodes, which then belong to liquid-like elements only, are treated as
Eulerian-Lagrangian (mesh velocity calculated independently of the material
velocity).

This ALE formulation prevents the mesh from degenerating when fluid motion occurs
in the casting, due to thermal convection. Also it allows the mesh boundary to follow
the evolution of the free surface of the remaining liquid pool and then to model pipe
formation.

5. Application to an industrial case
5.1 Presentation of the studied casting
The parts studied here are elements of very large electro-magnets for the Institute for
Nuclear Physics of the University of Mainz, Germany. Such magnets are used in an
electron accelerator for fundamental nuclear research. They are cast by the foundry of
Usinor Industeel and delivered fully equipped – coils excepted – to the university.
Each magnet is composed of two identical parts, as shown in Figure 4. Four magnets –
eight parts – should be manufactured.

These parts are very specific by their weight (125 tons each), their dimensions
ð2:5 £ 7:0 £ 1:0 mÞ and the steel grade. Their particular magnetic properties require the
use of a carbon-free steel, whose chemical composition, developed by the research
centre of Usinor Industeel, is close to pure iron.

Figure 3.
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The manufacturing route includes several stages. They are as follows.
. Elaboration of steel at the steelwork of Le Creusot.
. Gravity casting in molds made of sand with a thermoset resin. Each casting

needs two steel ladles.
. Trimming of the riser by blowtorching.
. Heat treatment to relax the residual stresses.
. Machining (a flatness tolerance of 0.1 mm throughout the 7 m long basis of the

part is achieved).

Regarding the shape of the central pipe defect occurring in the riser, the results
obtained with the numerical simulation have been compared with the real
measurements carried out on the first two parts elaborated.

5.2 Numerical modelling of solidification
The dimension of pieces, the required quality level and short manufacturing times lead
to the optimisation of the casting operation by numerical modelling. This has been
carried out with THERCASTw software. Preliminary computations have been done,
only using the heat transfer module of the software. This has permitted a fast
determination of the shape and the volume of the riser, as well as of the different
elements of the mold. The geometry that has been finally determined, using a single
central riser, is shown schematically in Figure 5.

In a second step, a full thermomechanical computation has been done to precisely
determine the shape of the primary shrinkage defect in the riser. The steel material
properties are given in Table I. Using symmetry conditions, only half of the casting has
been calculated. As shown in Figure 6, the configuration includes seven subdomains:
the cast part and six components of the mold. As the software permits non-coincident
meshes at interfaces between subdomains, each component has been meshed
separately, without any interface constraint. The part has approximately 1,20,000
tetrahedral elements and the mold subdomains 3,73,000. This corresponds to an
average mesh size of 0.10 m in the part. In the first approach, the mold has been

Figure 4.
On the left, schematic of

the magnet, composed
of two parts. On the right,

magnet after machining
of the two parts
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considered as non-deformable. Only the deformations affecting the part have been
calculated. The part cools down in the mold during approximately 127 h. Then the
mold is removed, which is associated in the simulation with a global change of the
thermomechanical boundary conditions. The same heat transfer coefficient is then
applied to the entire surface of the part, to model heat transfer with surrounding air by
convection, except on the lower surface which is in unilateral contact with the
basement of the mold. The heat exchange through this interface is defined by a higher
heat exchange coefficient. The complete cooling of the part has been simulated until a
maximum temperature of about 508C has been reached. The time step is automatically
stabilized ( Jaouen, 1998) to a value of 50 s attained after 2 h (process time). The process
time being quite long (around 333 h), the simulation requires a long computational
time: 15 days on a IBM44-P270 machine.

5.3 Comparison between measurements and computation. Discussion
In Figure 7, the shape of the pipe in the riser is shown for different process times: 2, 8,
16, 24, 32 and 41 h. As indicated by the distribution of the liquid fraction, which is
plotted on the same figure, this last time is close to the time at which solidification is
completed, which is around 36 h. It can be seen that the last region to solidify is located
at the bottom of the v-shape of the pipe shrinkage, which has almost reached its final
shape at this time.

This series of pictures illustrates well the ALE formulation. The mesh follows the
evolution of the free surface of the alloy because of the flux condition (equation (26)).
In the other regions, the mesh is regularized, yielding an homogeneous mesh size
throughout the computational domain. Twenty complete remeshings have been needed
in order to avoid mesh degeneracy along the pipe surface. Such complete remeshings
may affect other regions of the domain and this is the reason why the mesh is not
exactly conserved in solidified regions.

The four first pictures of Figure 7 show that when a liquid free surface is still present
ð gs ¼ 0Þ; it remains perfectly horizontal. This is a consequence of the clear distinction

Figure 5.
Geometry of cast parts,
including the central riser
(dimensions in mm)
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between the liquid-type and solid-type constitutive equations. A more approximate
treatment of the liquid obtained for instance, by an empirical extrapolation of the
parameters of an elastic-viscoplastic constitutive equation, would have led to a curved
free surface. Here, the use of a Newtonian flow rule for the liquid, using a sufficiently
low viscosity (here taken equal to 1 Pas), results in this flat surface.

When the free surface is in a mushy state, it is no more horizontal. The rapid
increase of the viscosity with the solid fraction explains that the alloy cannot be
completely sheared under very low stresses. Then the mushy free surface, between the
free surface of the solid shell and the free surface of the liquid pool, is not horizontal but
curved. After complete solidification, the free surface is “frozen” and has reached its
final shape. Only very small further changes in its shape are caused by thermal
contraction effects.

The final shape of the pipe calculated by the simulation is shown in Figure 8(a). There
is a reasonably good agreement with the profile experimentally measured on the two
first real parts that have been cast when writing this paper (Figure 8(b)). The v-shape is

Liquidus temperature (8C) 1,512
Solidus temperature (8C) 1,472
Solidification path: gs vs temperature T (8C) 1,472 1.0

1,488 0.75
1,495 0.5
1,505 0.3
1,512 0.0

Latent heat L ( J/kg) 3,00,000
Shrinkage ratio D1tr 20.036
Average dilatation coefficient a in solid (K21) 1.7 1025

Average dilatation coefficient a in liquid (K21) 3.3 1025

Density at liquidus r (kg/m) 7,050
Density at solidus r (kg/m) 7,300
Average specific heat cp ( J/kg/K) 700
Average thermal conductivity l (W/m/K) 30
Critical transition temperature TC (8C) 1,488
Viscoplastic consistency K (MPa) vs temperature T (8C) 1,488 20

1,512 1022

1,600 1022

Viscoplastic strain rate sensitivity m vs temperature T (8C) 1,488 0.4
1,512 1.0
1,600 1.0

Elastic-viscoplastic consistency K (MPa) vs temperature
T (8C) 20 700

1,488 20
Elastic-viscoplastic strain rate sensitivity m vs
temperature T (8C) 20 0.08

1,488 0.4
Static yield stress s00 (MPa) vs temperature T (8C) 20 400

1,400 0
1,488 0

Young’s modulus E (MPa) vs temperature T (8C) 20 2,00,000
1,000 1,00,000
1,488 10,000

Poisson coefficient n 0.3

Table I.
Properties of steel used

for the computation.
For confidentiality

reasons, actual values
cannot be given. Typical
values are given and the

interpolation between the
given values should not

been assumed linear
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globally well simulated. The predicted maximum depth is 1.48 m vs 1.43 m measured,
which is excellent. However, the precise shape of the pipe is not obtained.

A first remark can be done regarding the top level in the riser. During the process,
the maximum altitude of the solidified shell (z coordinate of point A in Figure 8(a))
decreases by 80 mm according to the computation. It can be seen from Figure 8(b) that
this displacement is highly underestimated by the calculation (by 180 mm), the
measured value being around 260 mm. The modelling of contact cannot be responsible
for it, since no friction has been accounted for along the isolating material of the riser
(mf ¼ 0 in (equation 14)). An alternative source of error could be an overestimated
transient heat transfer between the alloy and the isolating material, inducing a faster
“freezing” of the top periphery of the riser as compared to the real situation. Also one
should not forget that the computation has been done starting from an homogeneous
temperature field in the part and in the mold. This approximation – the impact of
which is difficult to estimate a priori – can be overcome only by performing the
modelling of the filling of the mold, which has not been done in the present case.

Regarding the shape of the pipe, it can be seen that the computation is able to
capture different regimes of the growth of the defect, particularly the latest stage
during which the remaining pool is in a mushy state of increasing consistency, which
yields to a steeper wall. However, the analysis of the quantitative prediction would
deserve a more detailed study, especially regarding the sensibility of the results to the
mesh size, and to the material parameters: transition temperature between the liquid-
and solid-type constitutive equations (in the present case TC corresponds to gs ¼ 0:75),
values of the rheological parameters.

It is interesting to plot the velocity field during solidification. In Figure 9, this is
done in the longitudinal section of the part (time 10 min, 2, 8, 12, 24 and 28 h). When the
part is still completely liquid, the free surface level decreases uniformly due to the
thermal contraction of the whole liquid contained in the mold. During the first 20 min,
the level change is 50 mm. Then the solidification proceeds and during the rest of the
process there is an additional decrease of 30 mm of the maximum altitude of the

Figure 6.
Finite element mesh of the
casting and the six
different subdomains of
the mould
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Figure 7.
Computation of the pipe
formation. Iso-values of

the liquid fraction
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Figure 8.
Comparison of calculated
(a) (left) and (b) measured
shape (right) shapes
of the pipe

Figure 9.
Velocity field at different
steps of the solidification
process (10 min, 2, 8, 12, 24
and 28 h). Iso-values of the
liquid fraction
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solidified shell in the riser, which yields the above mentioned 80 mm downwards
displacement. In Figure 9, the velocity field illustrates the feeding flow issued from the
riser. This flow is always found oriented towards the useful part of the casting. It is
free from recirculations possibly created by natural convection. This might be
surprising. However, one should not forget that this velocity field is one of the
single-phase medium, although the alloy is in a mushy state, involving two different
phases behaving differently. This point is very important and it is clear that a detailed
analysis of the liquid feeding flow would necessitate an effective two-phase
formulation with a clear distinction between the liquid velocity field and the solid
velocity field. As far as we know, such two-phase semi-solid models have been
developed and tested only in isothermal conditions (see for instance, Nguyen et al.,
1994; Lalli, 1985; Toyoshima and Takahashi, 1991; Bay et al., 1998). Extension to
non-isothermal conditions – including solidification, i.e. associated mass transfer from
the liquid to the solid phase – has not been yet clearly formulated in the literature. The
corresponding numerical resolution remains to be developed and would certainly
provide a better modelling of liquid feeding through a deformable mushy zone.
Therefore, in the framework of a thermomechanical analysis, aiming also at the
prediction of stresses and strains in the solid regions, we have privileged a single-phase
approach of the mushy state. Using such an approximation, the role of the riser is
perfectly illustrated, showing a continuous and stable feeding flow issued from the
riser, the value of which being between 10 and 20mm/s.

6. An example with a comparison between the proposed method and a heat
transfer alone method
The casting shown in Figure 10 is a 5 m high steel casting for the manufacturing of the
top ram of a power hammer. Its weight is about 110 tons and half of the geometry is
computed because of symmetry. The mesh of the casting has about 2,50,000 elements.
Complete solidification is obtained after about 34 hours. The solidification process has
been computed by the thermomechanical approach described in the present paper and
by a heat transfer alone approach. In the second case, the volume of the pipe defect is
estimated by the method of Roch et al. described in the introduction, but applied here in
three dimensions. It can be seen that the shapes of the free surface predicted by the two
methods differ significantly. Although no experimental validation is available on this
part, this tends to strengthen the authors’ conviction that the thermomechanical
approach is a powerful method for free surface prediction and pipe defect estimation.

7. Conclusion
To summarise, the direct thermomechanical computation of pipe defect, which has
been presented and applied here, seems very promising. By comparison with other
methods for pipe estimation, it is directly applicable to any casting and is indifferent to
the number of risers. This method also has the advantage of taking into account the
deformation of the whole part. In particular the volume of the air gaps between the part
and the mold is not directly assigned to the motion of the free surface in the riser. This
is not the case in the models which are based on heat transfer only, or in fluid flow
models: in such models, the sum of local volume contraction is entirely assigned to pipe
growth. Obviously this is not correct since the liberated volume between the part and
mold should not participate in the pipe volume. This effect can be seen only when
using a thermomechanical approach.
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In the future, following this first approach, we can list a certain number of suggestions
in order to improve the precision of the prediction.

. The sets of thermo-physical and rheological data could be determined with a
higher precision. This could explain the difference in the shape of the pipe that is
observed. In particular, the discontinuities in the slope of the v-shape that can be
seen on experimental measurements can come from the solidification path and/or
from the alloy constitutive equation at high temperature near the solidus.

. The mesh refinement is certainly a key-factor in order to capture the shape
evolution with an improved precision. It can be thought that an adaptive and
dynamic remeshing procedure which would follow automatically the advance of
the solidification front during the whole process would quantitatively improve
the prediction.

. Other factors might be important, such as the calculation of the deformation of
the mold components, as it has an influence on the deformation of the part and
the size of the air gaps.

. Finally, in the current thermomechanical model, the mushy state is modelled
using a one-phase approach, the alloy obeying a pure viscoplastic constitutive
equation within the solidification interval. This could be improved by modelling
the mushy alloy as a two-phase continuum, with distinction between the motion
of the liquid phase and of the solid phase. The development of such a two-phase
model and its implementation in the simulation package THERCASTw would
provide a comprehensive approach, capable of modelling concurrently all the
main phenomena participating in pipe formation.

Figure 10.
Comparison of the shape
of primary
macroshrinkage obtained
by the proposed
thermomechanical method
(on the left) and by the
heat transfer alone method
(on the right, grayzones
corresponding to the
location of the defect)
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